RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2017 FIRST YEAR [BATCH 2016-19]

CHEMISTRY (Honours)

: 20/05/2017

[Use one Answer Book for Unit I and another Answer Book for Unit II, III & IV]

(Attempt one question from each Unit)

Unit I [10 marks] a) Give an example of nucleophilic catalysis. Draw the respective energy profile diagram. [2] 1. b) (E)-Isomer of $HO_2CCH = CHCOO^{(-)}$ Na is a stronger base than its corresponding (Z) isomer. Explain. [2] $Ph_3C - OH \xrightarrow{50\% H_2SO_4}$ (Yellow solution) $\xrightarrow{H_2O}$ Colour disappears. Explain the (colourless) observation. [2] Which carbocation in each of the following pairs is more stable and why? [1+1]i) $MeO-CH = CH - CH_2$ and $H_2C = C - CH_2$ ii) $H_2^{(+)}C-CH_2-CO_2Et$ and $H_3C-CH-CO_2Et$ e) At 100°C, $t_{\frac{1}{2}}$ of \rightarrow O — O \leftarrow is 200 hours while that of Ph O Ph hour only. Explain the stability difference between the two peroxides. [2] a) Draw reaction free energy diagram for a reaction stated below that meets the following criteria. 2. Standard free energies are C < A < B and rate limiting step of the reaction is $B \rightleftharpoons C$. Reaction : $A \rightleftharpoons B \rightleftharpoons C$. [2] b) Explain the higher enol content of one over the other, in liquid state, between and (8% enol content at equilibrium) (76% enol content at equilibrium) [2] Arrange the following in order of increasing pK_a values : [2] Nitration of benzene does not show any primary kinetic isotope effect. Write down a suitable mechanism for the above reaction clearly stating and explaining the rate determining step. [2] Compare the base strengths of the following molecules: [2]

		<u>Unit II</u>	[8 marks]
3.	a)	Explain the following:	
		i) U-238 cannot be commonly used as a nuclear fuel.	[1.5]
	1. \	ii) Fission reactions are different from nuclear spallation.	[1.5]
	b)	An old piece of a wooden sample kept in a museum has a disintegration rate which is 30% of disintegration shown by an equal weight of a fresh wood sample. Find the age of the wood sample is a sample weight of a fresh wood sample.	
		sample. (Given : $t_{\frac{1}{2}}$ for 14 C = 5740 yr)	[3]
	c)	What is the probable energy source of the sun?	[2]
4.	a)	A certain radioactive sample has a half-life period of 40 days. How long will it require for	$\frac{3}{4}$ th
		of it to disintegrate? What fraction will remain unchanged after 3 half lives?	[3]
	b)	What is magic number? Give the significance of the magic number?	[1+2]
	c)	The slow neutrons are better projectiles compared to the fast neutrons in the nuclear fission 235. Why?	of U- [2]
		<u>Unit III</u>	[9 marks]
5.	a)	The estimated radius of NH ₄ ⁺ ion (148 pm) suggests a CsCl-type structure of NH ₄ F. But I	NH ₄ F
		adopts the Wurtzite structure – comment.	[2]
	b)	Using VSEPR mode, predict the shapes of (i) SO_2Cl_2 (ii) XeF_5^- and (iii) CF_3^+ .	[1×3]
	c)	Among MgSO ₄ and BaSO ₄ , which is expected to decompose as $MSO_4 \rightarrow MO + SO_3(g)$ at $SO_4 \rightarrow MO + SO_3(g)$	
	47	temperature?	[2]
	d)	Why is the melting point of CuCl (422°C) much lower than that of KCl (776°C)?	[2]
6.	a)	Explain the term lattice energy as applied to an ionic solid. Calculate the lattice energy of using the following data (KJ. mol ⁻¹) noted in parenthesis against each.	CsCl
		$Cs(s) \to Cs(g) (+79.9), Cs(g) \to Cs^{+}(g) (+374.05)$	
		$Cl_2(g) \to 2Cl(g) (+241.84), Cl(g) + e^- \to Cl^-(g) (-397.90)$	
		and $Cs(s) + \frac{1}{2}Cl_2(g) \rightarrow CsCl(s)$ (-623·0)	[3]
	b)	Account for the shape of XeF ₆ molecule in gas phase.	[2]
	c)	Lattice energy of hypothetical NaCl ₂ is expected to be higher than that of NaCl, but NaCl ₂ not exist. —Explain.	does [2]
	d)	The bond angles in NH ₃ (107°) and NF ₃ (102°) show reverse order in comparison to PH ₃	
		and PF ₃ (98°) —Explain.	[2]
		<u>Unit IV</u>	[8 marks]

7. a) Discuss the structure of BeCl₂ in gas phase (high temperature) and solid phase. [2]

b) What happens when gold (III) chloride solution is treated with stannous chloride? Give equation. [2]

c) Justify: i) Lithium can form Li₃N but potassium cannot.

ii) MgCO₃ is thermally less stable than CaCO₃. [2+2]

8. a) Explain, in short, the behaviour of Na-metal in liquid NH₃. [3]

b) Is it possible to obtain Hg_2^{2+} salts free of Hg^{2+} ? Give reason of your answer. [2]

c) Write down the preparation and structure of basic berryllium nitrate. [2+1]

____×___